Variable Viscosity Effect on Heat Transfer over a Continuous Moving Surface with Variable Internal Heat Generation in Micropolar Fluids
نویسندگان
چکیده
The effect of temperature-dependent viscosity on heat transfer over a continuous moving surface with variable internal heat generation in micropolar fluids is studied. The fluid viscosity is assumed to vary as inverse linear function of temperature. The governing equations are transformed into dimensionless forms using the stream function and suitable variables then solved numerically using the Runge-Kutta numerical integration, procedure in conjunction with shooting technique. A parametric study illustrating the influence of the viscosity parameter, heat source generation and micropolar parameter on the velocity, microrotation and temperature profiles skin friction, couple stress as well as the Nusselt are investigated. The results of the parametric study are shown in graphic and tabulated.
منابع مشابه
Analysis of Radiation Heat Transfer of a Micropolar Fluid with Variable Properties over a Stretching Sheet in the Presence of Magnetic Field
The present study deals with the analysis of the effects of radiative heat transfer of micropolar fluid flow over a porous and stretching sheet in the presence of magnetic field. The dynamic viscosity and thermal conductivity coefficient have formulated by temperature-dependent relations to obtain more exact results. The flow is supposed two-dimensional, incompressible, steady and laminar and t...
متن کاملCasson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation
The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...
متن کاملTemperature profile of a power-law fluid over a moving wall with arbitrary injection/suction and internal heat generation/absorption
The heat transfer for a non-Newtonian power-law fluid over a moving surface is investigated by applying a uniform suction/injection velocity profile. The flow is influenced by internal heat generation/absorption. The energy equation is solved at constant surface temperature condition. The Merk-Chao series is applied to obtain a set of ODEs instead of a complicated PDE. The converted ordinary diffe...
متن کاملEffect of slip and variable thermal boundary conditions on hydromagnetic mixed convection flow and heat transfer from a non-linearly stretching surface
The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...
متن کاملHeat generation and radiation effects on steady MHD free convection flow of micropolar fluid past a moving surface
This paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. Similarity transformation was employed to transform the governing partial differential equations into ordinary ones, which were then solved numerically using the finite element method...
متن کامل